AI in Colombian container terminals, more than a buzzword

Before you start

To preface, this article will not go into details of algorithms, models, or programming languages to implement AI. The content is aimed at highlighting from a high-level view the following operational aspects that can benefit from AI and arouse curiosity in those who deal with the operation of a container terminal day by day.

Optimization of import operations

The tool described above has as its final element a model known as a multi-class classifier. However, the complete solution landscape will articulate several models and data pipelines for example natural language processing (NLP) would be used to infer product codes from raw text cargo description. The good thing is that most of the terminal operators in Colombia have enough information in terms of parameters and volume to make possible this type of solution.

Prediction of cargo delivery date

Additional benefits for inland transporters

Once we have a model capable of predicting with high accuracy the cargo delivery date, a new tool can be created aimed at optimizing the business and operation of land transport. Going into details, the cargo delivery information of each terminal could be aggregated in a collaborative portal where inland transporters could browse and filter it by several categories (like the city of destination, weight, container size) and even bid on transport services. The main benefit for transporters is to be able to define intelligent routes and reducing idle time.

Other AI-based solutions

Thanks to Lifeth Álvarez

Related Articles